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Let p, be some point in P, such that ~p, is not in P,
Then (41) implies
h k
ToPot+ ZIOCJTij= - (TOqO + z ﬁjrjqj)
j= j=1
for some qq in Py and some p; and q;in P, (j=1,...,n).
Then

k
To(Po+qo) + _Zl T,(o;p;+8,9,)=0. 42)

But qo# —po, and all the points

Po+q0, #p;+84; G=1,...,k)

have rational coordinates. The linear independence of
Tps - - -, T, OVer the rationals now implies that (42) is
impossible. Therefore (41) is impossible.

Suppose instead:

R(os, -« ) =R(By, ..., B0 . (43)
Define the set of indices
J={j such that o;#p8;} . (44)

Assume J is not empty. Then (43) and Theorem 3 imply
2. %%P= > BitiP;. (45)
jed jed

Now we proceed as before: let & be a particular
member of J, and let p,, but not —py, lie in P . Now
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(44) implies

%: &TPi= ? Bt (46)

where p; and q; are in J. Since a;= —f; for jeJ, we find

% ;TP +9,)=0 @7

where p;+q;#0 for j=Ah. But then (47) is impossible
because the t; are independent over the rationals.
Therefore, J must be empty; in other words, (43) im-
plies o;=8;(j=1,...,n).

I want to thank Dr Edward W. Hughes for telling
me about the problem of homometric sets, and for
generously giving me much time.
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Probability Distribution of Bijvoet Differences. IT*
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The earlier theoretical treatment of the probability distribution of Bijvoet differences [Parthasarathy &
Srinivasan (1964). Acta Cryst. 17, 1400-1407], has been extended to four new situations, namely, when
the non-anomalous scatterers (Q) take up centrosymmetric configuration with the anomalous scatterers
(P) corresponding to P=one, P=two, P=many atoms with centrosymmetric (MC) and P=many atoms
with non-centrosymmetric (MNC) configuration. The theoretical distributions have been verified with

hypothetical models.

Introduction

The probability distribution of the Bijvoet differences
in the presence of anomalous scatterers in a non-
centrosymmetric crystal was considered by Partha-
sarathy & Srinivasan (1964, hereafter referred to as

* Contribution No. 376 from the Centre of Advanced Study
in Physics, University of Madras, Guindy Campus, Madras-
600025, India.

part I). This had led to useful information on the
optimum condition for measuring Bijvoet differences.
The Bijvoet ratio has been considered by Parthasarathy
& Parthasarathi (1973). In all these studies four situa-
tions have generally been considered for which prob-
ability distributions were derived in part I. These
correspond to the Q atoms (light atoms) bcing non-
centrosymmetric with the P atoms (anomalous scat-
terers) being one of the four types, namely (i) P=one,
(ii) P=two, (iii) P=many atoms with centrosymmetric
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configuration (MC for brevity) and (iv) P=many
atoms with non-centrosymmetric configuration (MNC).
A few other possible situations were not considered in
part L.

We consider now the Q group to be centrosymmet-
ric while the P group could be one of the following,*
(v) P=one, (vi) P=two, (vi)) P=MC and (viii)) P=
MNC, the structure as a whole being non-centro-
symmetric. It is obvious that these situations can arise
in practice since a light-atom group having a centro-
symmetric configuration with one or two heavy atoms
determining a non-centrosymmetric space group is not
uncommon. Case (viii) may be seen to be identical
with case (iv) since the situations are identical except
for a change in nomenclature of the P and Q groups.
Case (vii) corresponds to both P and Q groups being
centrosymmetric. It is of course implied for the
cases (v) to (vii) that the P group should be such as not
to have a centre of symmetry with respect to the centre
of symmetry of the Q group.

Derivation of the probability distribution

The derivation here follows the steps of part I and
accordingly this section may be treated as a continua-
tion of § 2 thereof. Equations and sections of part I
are referred to hereafter with a prefix I. The distribu-
tion of the normalized difference x can be derived from
(I-4) where we now have to assume the distribution of
Yo to be centrosymmetric given by

Py(po)=V2/m exp (—y3/2) . (1

The distribution of P,(|sin w|) can be taken to be the
same as (I-5). This follows from the fact that P and Q
do not have a common centre of symmetry and the

* For convenience the earlier four cases are referred to as
(i) to (iv) and the new ones as (v) to (viii).

3.0

0.6,

o]

0 * 0.4 08 I I:Z * 1.6 20
X —n
Fig. 1. Theoretical probability density function for the nor-
malized Bijvoet difference x corresponding to the anomalous
scattering group (P) containing one (1), two (2), many cen-
trosymmetric (MC) and many non-centrosymmetric (MNC)
atoms.
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angle y can be assumed to be uniformly distributed in
the range 0 to 2z.

We now follow the steps outlined in (I-7) to (I-9) to
arrive at the distribution of t=y,| sin ¢|

2 (" 12
Py(t)= % So cosec y exp (— - 5 cosec? y)dy . (2)

This on integration gives
2
Pu(t)= V% exp (~ EIKA(E/4) )

where K, is the modified Bessel function of order zero
with imaginary argument (Watson, 1944, p. 181).

We can now substitute P,(yp) for the various cases,
using the steps outlined in § I-2 (@), (b) and (c).

One-atom case: (case V)

Since P4(yp) is a delta function d(yp — 1) the distribu-
tion of x is

- oo 55 o

The function is in the normalized form and it can
be verified by checking that the integral reduces to
unity.

The expectation value for the present case is given by

m=ﬁﬁmk%mﬁpx ®)

The integral can be shown to reduce to (x)=(2/n)%/?=
0-5029 (Appendix I of part I).

Two-atom case: (case Vi)
The distribution of ypwith the origin chosen midway

between the two anomalous scatterers is (Srinivasan,
1960)

Py(yp)= » 0<yp=y2. (6)

2z
n)2—yp?
Making use of (4), (6) and (I-13) with the substitu-

tion yp =}/2 sech u we get
u) du,

(7

The above integration was carried out by numerical
methods. The distribution is given in the form of a
curve in Fig. 1.

The expectation value of the present case is given by

2 oo 2
P(x)= —5 So exp (— % cosh? u) K, (% cosh?

oo xZ
{x)= T’ZS X exp (— —- cosh? u)
) 8
x2
x Ko (? cosh? u) du. 3

The value was found by numerical integration to be
{x)=0-452.
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Many-atom case: P group centric (case vii)
The distribution of yp in this case is given by (Wil-
son, 1949; Ramachandran & Srinivasan, 1959)

Py(ye)=V2/m exp (= yp?[2) . )
After equations (4) and (9) are used in (I-13), the
distribution of x takes the form

2 ¢ yp? x? ) x? ) dyp
P = — — 77 K Ty ) T .
) So exP( 2 4yp) (4yp2‘ Vr

nl
(10)

With the substitution z=y,2 (10) reduces to

[ e z 1 /x> X
Pe= 2\ o[- 55 ()]

x Ko(g)%.(u)

With the use of the table of integrals (Gradshteyn &
Ryzhik, 1965, pp. 725, 6.653) the integral (11) reduces
to the form

P()= — [Ki(x/2)F- (1)

The probability density function is in the normalized

form and the expectation value of x in this case is equal
to 0-409.

Many-atom case: P group non-centrosymmetric (case
viii)

This case may be seen to be identical with case (iii)
of part I, except for a change in the nomenclature of P
and Q. Thus the distribution of P(x) is the same as
(I-20), namely
2)2
P(x)=—"—
(==L

Ko(x2), (14)

and the expectation value of x is given by {x)= }/2/z=
0-450.

Nature of the probability distribution

The probability density functions for cases (v) to (viii)
are shown in Fig. 1. All the density functions have a
singularity at the origin, as they contain the Bessel
function Ky(x). For convenience, we deal with the
cumulative function N(x),

Nx)= S:P(x)dx,

which has been calculated for all the cases by numerical
integration. The N(x) curves are shown in Fig. 2. The
complementary cumulative functions N(x)=1-—N(x)
are given in Table 1. Our main interest in these curves
is to compare their behaviour for fairly large values of
x. It is clear from Fig. 2 that the curve for the one-atom

PROBABILITY DISTRIBUTION OF BIJVOET DIFFERENCES. II

case passes well above the others for moderate and
large values of x, indicating that it is the most favour-
able. Moreover, the probability density function for
case (v) is exactly the same as that for case (ii).

The progressive change in the behaviour of the
curves is also reflected in the mean values of x. For
instance {x) is a maximum for case (v) (0-:502) and a
minimum for case (vii) (0-409). The values for cases
(vi) and (viii) are nearly the same (0-452). If we make
the overall comparison of all the eight cases in terms
of the mean value of x, it may be noted that the Q
group’s being non-centrosymmetric is in general more
favourable than when it is centrosymmetric for the
different cases of P=1, 2, MN and MNC.

The theoretical N(x) curves shown in Fig. 2 have

1 1 1
o] 05 o -] 20

L —

Fig. 2. Theoretical cumulative function N(x) for the normalized
Bijvoet difference x for 1, 2, MC and MNC cases of Fig. 1.

(1}

Fig. 3. Hypothetical structure in the plane-group symmetry P1,
used for testing the theoretical curves.
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0.2

X =

Fig. 4. Comparison of the experimental data with theoretical
cumulative function N(x) for the cases of Fig. 1. The theo-
retical curves are shown by solid lines and the experimental
points are marked as dots. For convenience the origin for
N(x) is shifted along y by 0-4, 0-8 and 1-2 respectively for
the cases 2, MC and MNC.

been tested with a hypothetical model shown in Fig. 3.
The heavy atoms are marked as open circles. For the
one and two-atom cases the heavy atoms 1 and 1, 2,
respectively, were used. For the case MC, the atoms
1,1°,2,2', 3,3 and 8,8 were used and for the case MNC
only the unprimed atoms were used. In all the cases the
agreement with the theoretical distributions is reason-
able (Fig. 4).
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Table 1. Values of the complementary
cumulative function
1 2 MC MNC
0-00 100-0 % 100-0 % 100-0 % 100-0 %
0-05 879 81-0 754 83-0
0-10 79-4 70-6 63-5 723
0-15 722 62-7 550 638
0-20 65-9 56-3 48-3 568
0-25 60-3 50-8 42-9 50-9
0-30 55-2 46-1 38-3 45-8
0-35 50-5 42-0 34-5 41-3
0-40 46-3 383 31-1 373
0-45 42-4 35-0 282 33-8
0-50 38-8 320 257 30-7
0-55 355 29-4 23-4 279
0-60 32-4 269 214 254
0-65 296 247 19-6 232
0-70 27-0 227 179 21-2
0-75 24-6 209 165 19-3
0-80 223 19-2 151 17-7
0-85 20-3 17-6 139 162
0-90 18-4 16:2 129 14-8
0-95 167 149 11-9 13-6
1-:00 151 137 11-0 12-5
1-10 12-3 11-6 9:4 105
1-20 10-0 9-7 8-0 8-8
1-:30 8-0 82 69 7-5
1-40 64 6-9 6-0 63
1-50 5-1 5-8 51 5-4
1-75 2-7 37 36 36
2-00 1-4 23 2:5 2:4

One of the authors (P.S.) would like to thank the
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